本地一公司计划2008年在省、市两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,省、市电视台的广告收费标准分别为元/分钟和200元/分钟,规定省、市两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在省、市两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本小题满分12分)已知函数,(). (Ⅰ)求函数的递增区间; (Ⅱ)若函数在上有两个不同的零点、,求的值.
(本小题满分12分)已知中的三个内角所对的边分别为,且满足,. (Ⅰ)求的值; (Ⅱ)求的面积.
(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值.
(本小题满分12分)已知{}是首项为,公差为的等差数列,是其前项的和,且,. (Ⅰ)求数列{}的通项及; (Ⅱ)设是首项为1,公比为3的等比数列.求数列{}的通项公式及其前项和.
已知数列中中, (1)求证:数列是等比数列,并求数列的通项公式 (2)若数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.