在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(Ⅰ)摸出的3个球为白球的概率是多少? (Ⅱ)摸出的3个球为2个黄球1个白球的概率是多少?(III)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
已知函数. (1)若曲线在处的切线的方程为,求实数a、b的值; (2)若是函数的极值点,求实数a的值; (3)若,且对任意,都有,求实数t的取值范围.
把正奇数数列中的数按上小下大、左小右大的原则排成如图的三角形数表: 设是位于这个三角形数表中从上往下数第m行、从左往右数第n个数. (1)求; (2)若,求m,n的值; (3)已知函数,若记三角形数表中从上往下数第n行各数的和为bn,求数列{f(bn)}的前n项和.
现要设计一个如图所示的金属支架(图中实线所示),设计要求是:支架总高度AH为6米,底座BCDEF是以B为顶点,以CDEF为底面的正四棱锥,C,D,E,F在以半径为1米的圆上,支杆AB⊥底面CDEF.市场上,底座单价为每米10元,支杆AB单价为每米20元.设侧棱BC与底面所成的角为θ. (1)写出的取值范围; (2)当θ取何值时,支架总费用y(元)最少?
已知二次函数: (1)若函数在区间上存在零点,求实数q的取值范围; (2)问:是否存在常数t(),当时,的值域为区间D,且D的长度为.
在锐角中,角A、B、C所对的边分别是a、b、c,为△ABC的外心. (1)若,求的值; (2)已知,,,求的值.