2005年某市的空气质量状况分布如下表:
其中X50时,空气质量为优,时空气质量为良,时,空气质量为轻微污染。(1)求E(X)的值;(2)求空气质量达到优或良的概率。
已知函数.(1)求函数的最小正周期和值域;(2)若为第二象限角,且,求的值.
顶点在坐标原点,开口向上的抛物线经过点,过点作抛物线的切线交x轴于点B1,过点B1作x轴的垂线交抛物线于点A1,过点A1作抛物线的切线交x轴于点B2,…,过点作抛物线的切线交x轴于点.(1)求数列{ xn },{ yn}的通项公式;(2)设,数列{ an}的前n项和为Tn.求证:;(3)设,若对于任意正整数n,不等式…≥成立,求正数a的取值范围.
如图,过点作抛物线 的切线,切点A在第二象限.(1)求切点A的纵坐标;(2)若离心率为的椭圆恰好经过切点A,设切线交椭圆的另一点为B,记切线,OA,OB的斜率分别为,求椭圆方程.
已知函数 ,. (1)当 时,求函数 的最小值; (2)当 时,讨论函数 的单调性; (3)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于、的点,,圆的直径为9。(1)求证:平面平面;(2)求二面角的平面角的正切值。