已知椭圆的离心率,短轴长为.(Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率为的直线与椭圆交于不同的两点、.是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.
(本小题满分12分)已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线上。(1)求a1和a2的值; (2)求数列{an},{bn}的通项an和bn;(3)设cn=an·bn,求数列{cn}的前n项和Tn.
(本小题满分12分)如下图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求点在射线上,点在射线上,且直线过点,其中米,米. 记三角形花园的面积为.(Ⅰ)问:取何值时,取得最小值,并求出最小值;(Ⅱ)若不超过1764平方米,求长的取值范围.
(本小题满分12分)已知等比数列{an}中,an > 0,公比q∈(0,1),且a1a5+2a3a5+a2a8=25, a3与a5的等比中项为2.(1)求数列{an}的通项公式;(2)设bn=log2an,求数列{bn}的前n项和Sn.
(本小题满分10分)在△ABC中,a、b是方程x2-2x+2=0的两根,且2cos(A+B)=-1.(1)求角C的度数; (2)求c; (3)求△ABC的面积.
(本小题满分10分)已知,(1)求(2)若,求c的取值范围。