某篮球队运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在5天中进球的个数统计结果如下:经过计算,甲进球的平均数为和方差。(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙二人中选出一人去参加3分球投篮大赛,你认为应该选哪名队员?为什么?
某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级: A 、 B 、 C 、 D ,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:
(1)补全条形统计图
(2)该年级共有700人,估计该年级足球测试成绩为 D 等的人数为 人;
(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.
荆岗中学决定在本校学生中,开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校 m 名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.
(1) m = , n = ;
(2)请补全图中的条形图;
(3)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球;
(4)在抽查的 m 名学生中,喜爱打乒乓球的有10名同学(其中有4名女生,包括小红、小梅),现将喜爱打乒乓球的同学平均分成两组进行训练,且女生每组分两人,求小红、小梅能分在同一组的概率.
如图,直线 l : y = kx + b ( k < 0 ) 与函数 y = 4 x ( x > 0 ) 的图象相交于 A 、 C 两点,与 x 轴相交于 T 点,过 A 、 C 两点作 x 轴的垂线,垂足分别为 B 、 D ,过 A 、 C 两点作 y 轴的垂线,垂足分别为 E 、 F ;直线 AE 与 CD 相交于点 P ,连接 DE .设 A 、 C 两点的坐标分别为 ( a , 4 a ) 、 ( c , 4 c ) ,其中 a > c > 0 .
(1)如图①,求证: ∠ EDP = ∠ ACP ;
(2)如图②,若 A 、 D 、 E 、 C 四点在同一圆周上,求 k 的值;
(3)如图③,已知 c = 1 ,且点 P 在直线 BF 上,试问:在线段 AT 上是否存在点 M ,使得 OM ⊥ AM ?如存在,请求出点 M 的坐标;若不存在,请说明理由.
在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、 A 4 的打印纸等,其实这些矩形的长与宽之比都为 2 : 1 ,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形” ABCD 中, P 为 DC 边上一定点,且 CP = BC ,如图所示.
(1)如图①,求证: BA = BP ;
(2)如图②,点 Q 在 DC 上,且 DQ = CP ,若 G 为 BC 边上一动点,当 ΔAGQ 的周长最小时,求 CG GB 的值;
(3)如图③,已知 AD = 1 ,在(2)的条件下,连接 AG 并延长交 DC 的延长线于点 F ,连接 BF , T 为 BF 的中点, M 、 N 分别为线段 PF 与 AB 上的动点,且始终保持 PM = BN ,请证明: ΔMNT 的面积 S 为定值,并求出这个定值.
我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了 m 名学生(每名学生必选且只能选择这五项活动中的一种).
根据以上统计图提供的信息,请解答下列问题:
(1) m = , n = .
(2)补全上图中的条形统计图.
(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.
(4)在抽查的 m 名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母 A 、 B 、 C 、 D 代表)