两条完全相同的矩形纸片、如图放置,.求证:四边形为菱形.
把下列各式分解因式:(1)(2)
计算:(1)(2)
计算:(1) (2)
(本题12分)如图,把△OAB放置于平面直角坐标系xOy中,,,把△OAB沿轴的负方向平移2OA的长度后得到△DCE.(1)若过原点的抛物线经过点B、E,求此抛物线的解析式;(2)若点在该抛物线上移动,当点P在第一象限内时,过点作轴于点,连结.若以、、为顶点的三角形与以B、C、E为顶点的三角形相似,直接写出点的坐标;(3)若点M(-4,n) 在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.
(本题12分)东方专卖店专销某种品牌的计算器,进价元/只,售价元/只.为了促销,专卖店决定凡是买只以上的,每多买一只,售价就降低元(例如,某人买只计算器,于是每只降价元,就可以按元/只的价格购买),但是最低价为元/只.(1)求顾客一次至少买多少只,才能以最低价购买?(2)写出当一次购买只时(),利润(元)与购买量(只)之间的函数关系式;(3)有一天,一位顾客买了只,另一位顾客买了只,专卖店发现卖了只反而比卖了只赚的钱少,为了使每次卖得多赚钱也多,在其他促销条件不变的情况下,最低价元/只至少要提高到多少元?