如图,四边形中,,且,的周长为14 ,将平移到的位置。(1)指出平移的方向和平移的距离;(2)求梯形的周长。
如图,在 Rt Δ ABC 中, ∠ BAC = 90 ° , AB = AC , M 是 AC 边上的一点,连接 BM ,作 AP ⊥ BM 于点 P ,过点 C 作 AC 的垂线交 AP 的延长线于点 E .
(1)如图1,求证: AM = CE ;
(2)如图2,以 AM , BM 为邻边作平行四边形 AMBG ,连接 GE 交 BC 于点 N ,连接 AN ,求 GE AN 的值;
(3)如图3,若 M 是 AC 的中点,以 AB , BM 为邻边作平行四边形 AGMB ,连接 GE 交 BC 于点 M ,连接 AN ,经探究发现 NC BC = 1 8 ,请直接写出 GE AN 的值.
某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量 y (件 ) 与销售单价 x (元 ) 是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
销售单价 x (元)
40
60
80
日销售量 y (件)
(1)直接写出 y 与 x 的关系式 ;
(2)求公司销售该商品获得的最大日利润;
(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过 a 元,在日销售量 y (件 ) 与销售单价 x (元 ) 保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求 a 的值.
如图,以 AB 为直径的 ⊙ O 经过 ΔABC 的顶点 C ,过点 O 作 OD / / BC 交 ⊙ O 于点 D ,交 AC 于点 F ,连接 BD 交 AC 于点 G ,连接 CD ,在 OD 的延长线上取一点 E ,连接 CE ,使 ∠ DEC = ∠ BDC .
(1)求证: EC 是 ⊙ O 的切线;
(2)若 ⊙ O 的半径是3, DG · DB = 9 ,求 CE 的长.
为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地 A 和人工智能科技馆 C 参观学习如图,学校在点 B 处, A 位于学校的东北方向, C 位于学校南偏东 30 ° 方向, C 在 A 的南偏西 15 ° 方向 ( 30 + 30 3 ) km 处.学生分成两组,第一组前往 A 地,第二组前往 C 地,两组同学同时从学校出发,第一组乘客车,速度是 40 km / h ,第二组乘公交车,速度是 30 km / h ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).
某校准备组建"校园安全宣传队",每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班"校园安全宣传员"人选.
(1)用画树状图或列表法,写出"王老师从袋中随机摸出两个小球"可能出现的所有结果.
(2)求甲同学被选中的概率.