(本小题满分l2分)已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.(1)证明:;(2)判断并说明上是否存在点,使得∥平面;(3)若与平面所成的角为,求二面角的余弦值.
设是定义在上以2为周期的函数,对,用表示区间. 已知当时,函数. (1)求在上的解析式; (2)对自然数,求集合{使方程在上有两个不相等的实根}
设函数的图象关于点对称. (Ⅰ)求; (Ⅱ)求函数的单调增区间; (Ⅲ)求函数在上的最大值和取最大值时的.
已知向量,分别求使下列结论成立的实数的值 (Ⅰ); (Ⅱ)
定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。 (1)证明:数列是“平方递推数列”,且数列为等比数列。 (2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。 (3)记,求数列的前项之和,并求使的的最小值。
在等比数列中,,公比,且,又与的等比中项为,,数列的前项和为。 (1)求数列的通项公式。 (2)求为何值时最大值?