(本小题满分12分)如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD ="2AE" ="2AB" =" 4AF=" 4,将四边形EFCD沿EF折起使AE=AD.(1)求证:AF∥平面CBD;(2)求平面CBD与平面ABFE夹角的余弦值.
已知函数(,,),的部分图像如图所示,、分别为该图像的最高点和最低点,点的坐标为.(1)求的最小正周期及的值;(2)若点的坐标为,,求的值和的面积.
下图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(1)求此人到达当日空气质量优良的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明).
已知函数.(1)当时,讨论函数的单调性;(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?(3)试判断当时图象是否存在不同的两点A、B具有(2)问中所得出的结论.
已知椭圆的离心率为,点在椭圆上.(1)求椭圆C的方程;(2)设椭圆的左右顶点分别是A、B,过点的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.
某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人 (1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场中有2人10分,3人9分,从这5人中随机抽取2人,求2人成绩之和为19分的概率.