某公司计划2013年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
如图,已知多面体ABC-A 1B 1C 1,A 1A,B 1B,C 1C均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.
(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;
(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.
已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P( - 3 5 , - 4 5 ).
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)= 5 13 ,求cosβ的值.
已知 f x = x + 1 - ax - 1 .
(1)当 a = 1 时,求不等式 f x > 1 的解集;
(2)若 x ∈ 0 , 1 时不等式 f x > x 成立,求 a 的取值范围.
在直角坐标系 xOy 中,曲线 C 1 的方程为 y = k x + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ 2 + 2 ρ cos θ - 3 = 0 .
(1)求 C 2 的直角坐标方程;
(2)若 C 1 与 C 2 有且仅有三个公共点,求 C 1 的方程.