某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1kg、B原料2kg;生产乙产品1桶需耗A原料2kg,B原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?
已知函数,过点作曲线的切线,求切线方程.
已知命题:方程所表示的曲线为焦点在y轴上的椭圆;命题:实数满足不等式<0. (1)若命题为真,求实数的取值范围;(2)若命题是命题的充分不必要条件,求实数的取值范围
已知函数() (1)求函数的单调递减区间;(2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得,如果存在,求出的取值范围,如果不存在,说明理由.
如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.(1)求证:;(2)求正方形ABCD的边长;(3)求直线与平面所成角的正弦值.