设z=2y-2x+4,其中x、y满足条件求z的最大值和最小值.
已知函数 (I)当时,讨论函数的单调性: (Ⅱ)若函数的图像上存在不同两点,,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”. 试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.
已知椭圆:的离心率等于,点在椭圆上. (I)求椭圆的方程; (Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。
如图,已知菱形所在平面与直角梯形所在平面互相垂直,,点,分别是线段,的中点. (I)求证:平面平面; (Ⅱ)点在直线上,且//平面,求平面与平面所成角的余弦值。
不透明的袋中有8张大小和形状完全相同的卡片,卡片上分别写有1,1,2,2,3,3,,.现 从中任取3张卡片,假设每张卡片被取出的可能性相同. (I)求取出的三张卡片中至少有一张字母卡片的概率; (Ⅱ)设表示三张卡片上的数字之和.当三张卡片中含有字母时,则约定:有一个字母和二个相同数字时为这二个数字之和,否则,求的分布列和期望.
已知等差数列前三项的和为,前三项的积为. (Ⅰ)求等差数列的通项公式; (Ⅱ)若,,成等比数列,求数列的前项和.