如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1-A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中. (1)证明:中截面DEFG是梯形; (2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1-A2B2C2的体积V)时,可用近似公式V估=S中-h来估算.已知V=13d1+d2+d3S试判断V估与V的大小关系,并加以证明.
如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高(用题中所给字母表示).
已知函数,(1)求的极值;(2)若关于x的不等式在上恒成立,求k的取值范围;(3)证明:.
已知椭圆的两焦点和短轴的两端点正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为.(1)求椭圆的标准方程;(2)设P是椭圆上任一点,MN 是圆C:的任一条直径,求的最大值.
已知数列满足:(1)设,求数列的通项公式;(2)求数列的前 n项和.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD是正三角形且与底面ABCD垂直,E是AB的中点,PC与平面ABCD所成角为.(1)求二面角P-CE-D的大小;(2)当AD为多长时,点D到平面PCE 的距离为2.