已知x,y满足约束条件,试求解下列问题.(1)z=的最大值和最小值;(2)z=的最大值和最小值;(3)z=|3x+4y+3|的最大值和最小值.
若直线l:与抛物线交于A、B两点,O点是坐标原点。 (1)当m=-1,c=-2时,求证:OA⊥OB; (2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。 (3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论。
已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率;若“”为真,“”为假,求实数的取值范围.
已知圆C: (1)若不过原点的直线与圆C相切,且在轴、轴上的截距相等,求直线的方程; (2)从圆C外一点向圆引一条切线,切点为M,O为坐标原点,且有,求点P的轨迹方程.
已知偶函数,对任意,恒有,求:(1)的值;(2)的表达式; (3)对任意的,都有成立时,求的取值范围.
在某次测验中,有6位同学的平均成绩为75分,用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差; (2)从前5位同学中,随机地选2位同学,求恰有1位同学的成绩在区间(68,75)中的概率.