如图,在广场上用氢气球悬挂着“人文黔东南,和谐黔东南,美丽黔东南,建设黔东南”的大型宣传条幅AC、小明站在B处看条幅顶端A的仰角为45o,再往条幅方向前往20米到D处,在D处看条幅顶端A的仰角为60o,求条幅AC的高度(小明的身高不计,条幅垂直于地面)(结果精确到0.1米,参考数据)
在□ABOC中,AO⊥BO,且AO=BO.以AO、BO所在直线为坐标轴建立如图所示的平面直角坐标系,已知B(-6,0),直线过点C且与x轴交于点D.(1)求点D的坐标;(2)点E为y轴正半轴上一点,当∠BED=45°时,求直线EC的解析式;(3)在(2)的条件下,设直线EC与x轴交于点F,ED与AC交于点G.点P从点O出发沿折线OF-FE运动,在OF上的速度是每秒2个单位,在FE上的速度是每秒个单位.在运动过程中直线PA交BE于H,设运动时间为t.当以E、H、A为顶点的三角形与△EGC相似时,求t的值.
如图,在锐角△ABC中,AC是最短边,以AC中点O为圆心, AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若 ,且AC=4,求CF的长.
如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,完成下列问题:①以点O为原点、水平方向所在直线为x轴、竖直方向所在直线为y轴,建立平面直角坐标系,写出点的坐标:C 、D ;②⊙D的半径为 (结果保留根号);③若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是 ;④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.
某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?
如图,在□ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C. (1)求证:△ABF∽△EAD; (2)若AB=4,∠BAE=30º,求AE的长; (3)在(1)(2)的条件下,若AD=3,求BF的长.