已知是常数),且(其中为坐标原点).(1)求关于的函数关系式;(2)求函数的单调区间;(3)若时,的最大值为4,求的值.
已知函数,其中且. (1)当时,若无解,求的范围; (2)若存在实数,(),使得时,函数的值域都也为,求的范围.
设数列的前项和为,已知,,. (1)设,求证:数列是等比数列; (2)若数列是单调递增数列,求实数的取值范围.
在四棱锥中,平面,底面为直角梯形,,,且为的中点. (1)求证:平面; (2)求直线与平面所成角的正切值.
已知向量,,函数. (1)求函数的最小正周期; (2)求函数在上的值域.
已知,且,1,2,3,…. (1)求,,; (2)求数列的通项公式; (3)当且时,证明:对任意都有成立.