如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于2,求直线l的斜率的取值范围.
已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.9,则P(0<ξ<2)=( )
已知函数的图象在点处的切线方程为.[来 (1)用表示出,; (2)证明:当时,在上恒成立; (3)证明:.
设F1,F2分别是椭圆C:的左、右焦点. (1)设点是椭圆C上的点,且F1(﹣1,0),F2(1,0),试写出椭圆C的方程; (2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程; (3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M、N两点,若直线PM,PN的斜率都存在,并记为,试探究的值是否与点P及直线L有关,并证明你的结论.
在数列,中,且,,成等差数列,,,成等比数列(). (1)求及; (2)猜想,的通项公式,并证明你的结论.
如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点. (Ⅰ)求证:PA⊥平面ABCD; (Ⅱ)求EF和平面ABCD所成的角α的正切; (Ⅲ)求异面直线EF与BD所成的角β的余弦.