如果是函数的一个极值,称点是函数的一个极值点.已知函数(1)若函数总存在有两个极值点,求所满足的关系;(2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.
若在区间[-1,1]上单调递增,求的取值范围.
已知函数是上的可导函数,若在时恒成立.(1)求证:函数在上是增函数;(2)求证:当时,有.
设三次函数在处取得极值,其图象在处的切线的斜率为。求证:;
设,.令,讨论在内的单调性并求极值;
已知定义在正实数集上的函数,其中。设两曲线有公共点,且在公共点处的切线相同。(1)若,求的值;(2)用表示,并求的最大值。