如果是函数的一个极值,称点是函数的一个极值点.已知函数(1)若函数总存在有两个极值点,求所满足的关系;(2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.
已知,n∈N+,An=2n2,Bn=3n,试比较An与Bn的大小, 并加以证明.
用数学归纳法证明对n∈N+都有.
平面内有n(n∈N+,n≥2)条直线,其中任何两条不平行,任何三条不过 同一点,证明:交点的个数f(n)=.
用反证法证明:如果x>,那么x2+2x-1≠0.
已知数列{an}满足a1=λ,an+1=an+n-4,λ∈R,n∈N+,对任意λ ∈R,证明:数列{an}不是等比数列.