已知数列的前n项和(n为正整数)。(1)令,求证数列是等差数列,(2)求数列的通项公式;(3)令,。是否存在最小的正整数,使得对于都有恒成立,若存在,求出的值。不存在,请说明理由。
已知圆G:经过椭圆的右焦点F及上顶点B.过椭圆外一点且倾斜角为的直线交椭圆于C、D两点.(1) 求椭圆方程;(2) 若右焦点F在以CD为直径的圆E的内部,求的取值范围。
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1) 求出,并猜测的表达式;(2) 求证:+++…+.
如图, 内接于⊙, 是⊙的直径, 是过点的直线, 且.(1) 求证: 是⊙的切线;(2)如果弦交于点, , , , 求.
已知不等式的解集是(1)求实数的取值集合M;(2) 若,∈M,试比较与的大小
在平面直角坐标系xOy中,直线l的参数方程为 它与曲线C:交于A、B两点。(1)求|AB|的长(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离。