如图, 内接于⊙, 是⊙的直径, 是过点的直线, 且.(1) 求证: 是⊙的切线;(2)如果弦交于点, , , , 求.
已知椭圆的焦距为,且过点. (1)求椭圆的方程; (2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.
在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格(1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较。(2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率;(3)从甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人数记为X,求X的分布列和期望。
如图所示,在四棱锥中,底面ABCD为菱形,, Q为AD的中点.(Ⅰ)若,求证:平面平面;(Ⅱ)点M在线段PC上,若平面平面ABCD,且,三棱锥的体积,求二面角的大小.
已知等差数列的前项和为,为等比数列,且,。(1)求数列,的通项公式;(2)求数列的前n项和。
在中,角的对边分别为且(1)求的值;(2)若,且,求的面积.