如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).请你用画树状图或列表格的方法求出|m+n|>1的概率;直接写出点(m,n)落在函数y=-图象上的概率.
如图,C为线段AB的中点,D在线段CB上,且AB=12,AD=AB,求CD的长.
化简求值:,其中,.
解方程: (1) (2)
计算: (1) (2)
已知,如图1,抛物线过点且对称轴为直线点B为直线OA下方的抛物线上一动点,点B的横坐标为m. (1)求该抛物线的解析式: (2)若的面积为S.求S关于m的函数关系式,并求出S的最大值. (3)如图2,过点B作直线轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标,若不存在,请说明理由.