如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M. (1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB. (2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形. ①问:-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由. ②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.
先化简,再求值:,其中.
解不等式组
如图,∠C=∠E,∠EAC=∠DAB,AB=AD.求证:BC=DE.
设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数,当x=1时,y=3;当x=3时,y=1,即当时,有,所以说函数是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y=是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数()是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).
(1)如图1,在四边形ABCD中,AB=BC,∠ABC=80°,∠A+∠C=180°,点M是AD边上一点,把射线BM绕点B顺时针旋转40°,与CD边交于点N,请你补全图形,求MN,AM,CN的数量关系;(2)如图2,在菱形ABCD中,点M是AD边上任意一点,把射线BM绕点B顺时针旋∠ABC,与CD边交于点N,连结MN,请你补全图形并画出辅助线,直接写出AM,CN,MN的数量关系是 ;(3)如图3,正方形ABCD的边长是1,点M,N分别在BC,CD上,若△DMN的周长为2,则△MBN的面积最小值为 .