如图,已知一条直线过点,且与抛物线交于A,B两点,其中点A的横坐标是.(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3) 过线段AB上一点P,作PM //x轴,交抛物线于点M,点M在第一象限,点N,当点M的横坐标为何值时,的长度最大?最大值是多少?
解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.(1)设A=,B=,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.
给定下面一列分式:,,,,…,(其中),(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.
张明与李强共同清点一批图书,已知张明清点完200本图书所用时间与李强清点完300本图书所用时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.