如图,P是反比例函数(>0)的图象上的一点,PN垂直轴于点N,PM垂直y轴于点M,矩形OMPN的面积为2,且ON=1,一次函数的图象经过点P.(1)求该反比例函数和一次函数的解析式;(2)设直线与轴的交点为A,点Q在y轴上,当△QOA的面积等于矩形OMPN的面积的时,直接写出点Q的坐标.
解方程:.
已知:D是AC上一点,BC=AE,DE∥AB,∠B=∠DAE.求证:AB=DA.
定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组(,,)为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”为.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.应用新知:(1)如图4,正方形ABCD的边长为1,则 ,点D关于△ABC的“面积坐标”是 ;探究发现:(2)在平面直角坐标系中,点,①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为,试探究与之间有怎样的数量关系,并说明理由;②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);解决问题:(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.
四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值;(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,,当E,F,D三点共线时,求DF的长及tan∠ABF的值.
抛物线与轴交于点A,B,与y轴交于点C,其中点B的坐标为.(1)求抛物线对应的函数表达式;](2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;(3)将线段BC平移得到线段(B的对应点为,C的对应点为),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点到直线的距离的取值范围.