设数列的前项和为,且满足,,.(1)猜想的通项公式,并加以证明;(2)设,且,证明:.
如图,在矩形ABCD中,AB=2AD=2,O为CD的中点,沿AO将△AOD折起,使DB=. (1)求证:平面AOD⊥平面ABCO; (2)求直线BC与平面ABD所成角的正弦值.
已知数列{an}满足a1=3,an+1=an+p·3n(n∈N*,p为常数),a1,a2+6,a3成等差数列. (1)求p的值及数列{an}的通项公式; (2)设数列{bn}满足bn=,证明:bn≤.
一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球. (1)求取出的3个球编号都不相同的概率; (2)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.
已知函数f(x)=sin xcos x+cos 2x-,△ABC三个内角A,B,C的对边分别为a,b,c,且f(B)=1. (1)求角B的大小; (2)若a=,b=1,求c的值.
已知函数f(x)=ex-kx2,x∈R. (1)若k=,求证:当x∈(0,+∞)时,f(x)>1; (2)若f(x)在区间(0,+∞)上单调递增,试求k的取值范围; (3)求证:<e4(n∈N*)..