生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中的纸条按图②方式拉紧,压平后可得到图③中的正五边形(阴影部分表示纸条的反面).将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是 ;若原长方形纸条(图①)宽为2cm,求(1)中展开后平面图形的周长(可以用三角函数表示).
如图,已知锐角三角形内接于圆,于点,连接.
(1)若,
①求证:.
②当时,求面积的最大值.
(2)点在线段上,,连接,设,,是正数),若,求证:.
设二次函数,是实数).
(1)甲求得当时,;当时,;乙求得当时,.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.
(2)写出二次函数图象的对称轴,并求该函数的最小值(用含,的代数式表示).
(3)已知二次函数的图象经过和两点,是实数),当时,求证:.
如图,已知正方形的边长为1,正方形的面积为,点在边上,点在的延长线上,设以线段和为邻边的矩形的面积为,且.
(1)求线段的长;
(2)若点为边的中点,连接,求证:.
方方驾驶小汽车匀速地从地行驶到地,行驶里程为480千米,设小汽车的行驶时间为(单位:小时),行驶速度为(单位:千米小时),且全程速度限定为不超过120千米小时.
(1)求关于的函数表达式;
(2)方方上午8点驾驶小汽车从地出发.
①方方需在当天12点48分至14点(含12点48分和14点)间到达地,求小汽车行驶速度的范围.
②方方能否在当天11点30分前到达地?说明理由.
如图,在中,.
(1)已知线段的垂直平分线与边交于点,连接,求证:.
(2)以点为圆心,线段的长为半径画弧,与边交于点,连接.若,求的度数.