如图,若正方形ABCD的四个顶点恰好分别在四条平行线l1、l2、l3、l4上,设这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证:h1=h3;(2)现在平面直角坐标系内有四条直线l1、l2、l3、x轴,且l1∥l2∥l3∥x轴,若相邻两直线间的距离为1,2,1,点A(4,4)在l1,能否在l2、l3、x轴上各找一点B、C、D,使以这四个点为顶点的四边形为正方形,若能,请直接写出B、C、D的坐标;若不能,请说明理由。
如图,AD是ΔABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°, 试求:(1)∠D的度数;(2 )∠ACD的度数
如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高. (1)求∠BAE的度数; (2)求∠EAD的度数.
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系. (1) 直接写出点M及抛物线顶点P的坐标; (2) 求出这条抛物线的函数解析式; (3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连结DE、OE. (1)求证:DE是⊙O的切线; (2)如果⊙O的半径是cm,ED=2cm,求AB的长.
一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌面上,各边垂下的长度相同,求这块台布的长与宽。