某海域有一小岛 P ,在以 P 为圆心,半径 r 为 10 ( 3 + 3 ) 海里的圆形海域内有暗礁.一海监船自西向东航行,它在 A 处测得小岛 P 位于北偏东 60 ° 的方向上,当海监船行驶 20 2 海里后到达 B 处,此时观测小岛 P 位于 B 处北偏东 45 ° 方向上.
(1)求 A , P 之间的距离 AP ;
(2)若海监船由 B 处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由 B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?
【问题提出】 学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究. 【初步思考】 我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究. 【深入探究】 第一种情况:当∠B是直角时,△ABC≌△DEF. (1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF. 第二种情况:当∠B是钝角时,△ABC≌△DEF. (2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF. 第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等. (3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹) (4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.
如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F. (1)求∠F的度数; (2)若CD=2,求DF的长.
如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1), (1)写出A、B两点的坐标; (2)画出△ABC关于y轴对称的△A1B1C1 ; (3)画出△ABC向下平移3个单位后得到的△A2B2C2
观察下列关于自然数的等式: 32﹣4×12=5① 52﹣4×22=9② 72﹣4×32=13③ … 根据上述规律解决下列问题: (1)完成第四个等式:92﹣4×2=; (2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.