某海域有一小岛 P ,在以 P 为圆心,半径 r 为 10 ( 3 + 3 ) 海里的圆形海域内有暗礁.一海监船自西向东航行,它在 A 处测得小岛 P 位于北偏东 60 ° 的方向上,当海监船行驶 20 2 海里后到达 B 处,此时观测小岛 P 位于 B 处北偏东 45 ° 方向上.
(1)求 A , P 之间的距离 AP ;
(2)若海监船由 B 处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由 B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?
(年贵州铜仁14分)已知:直线y=ax+b与抛物线的一个交点为A(0,2),同时这条直线与x轴相交于点B,且相交所成的角β为45°.(1)求点B的坐标;(2)求抛物线的解析式;(3)判断抛物线与x轴是否有交点,并说明理由.若有交点设为M,N(点M在点N左边),将此抛物线关于y轴作轴反射得到M的对应点为E,轴反射后的像与原像相交于点F,连接NF,EF得△DEF,在原像上是否存在点P,使得△NEP的面积与△NEF的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.
(年广西玉林、防城港12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.
(年广西南宁10分)在平面直角坐标系中, 抛物线与直线交于A, B两点,点A在点B的左侧.(1)如图1,当时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线与x轴交于C,D两点(点C在点D的左侧).在直线上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.
(年广西崇左12分)在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的解析式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.
(2014年福建漳州14分)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线. (1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是 ,衍生直线的解析式是 ; (2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式; (3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.