先化简,再求值 ,其中 =
如图所示, AB 是 ⊙ O 的直径,点 C 为 ⊙ O 上一点,过点 B 作 BD ⊥ CD ,垂足为点 D ,连接 BC . BC 平分 ∠ ABD .
求证: CD 为 ⊙ O 的切线.
如图,抛物线 y = a x 2 + bx + c 与两坐标轴相交于点 A ( − 1 , 0 ) 、 B ( 3 , 0 ) 、 C ( 0 , 3 ) , D 是抛物线的顶点, E 是线段 AB 的中点.
(1)求抛物线的解析式,并写出 D 点的坐标;
(2) F ( x , y ) 是抛物线上的动点:
①当 x > 1 , y > 0 时,求 ΔBDF 的面积的最大值;
②当 ∠ AEF = ∠ DBE 时,求点 F 的坐标.
如图, C 、 D 是以 AB 为直径的 ⊙ O 上的点, AC ̂ = BC ̂ ,弦 CD 交 AB 于点 E .
(1)当 PB 是 ⊙ O 的切线时,求证: ∠ PBD = ∠ DAB ;
(2)求证: B C 2 − C E 2 = CE · DE ;
(3)已知 OA = 4 , E 是半径 OA 的中点,求线段 DE 的长.
如图,已知四边形 ABCD 中,对角线 AC 、 BD 相交于点 O ,且 OA = OC , OB = OD ,过 O 点作 EF ⊥ BD ,分别交 AD 、 BC 于点 E 、 F .
(1)求证: ΔAOE ≅ ΔCOF ;
(2)判断四边形 BEDF 的形状,并说明理由.
“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买 A 、 B 两种型号的垃圾处理设备共10台.已知每台 A 型设备日处理能力为12吨;每台 B 型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买 A 、 B 两种设备的方案;
(2)已知每台 A 型设备价格为3万元,每台 B 型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?