数列中,,,.(Ⅰ)证明:数列是等比数列,并求;(Ⅱ)求数列的前项和.
某人的一张银行卡的密码共有6位数字,每位数字都可以从0~9中任选一个,他在银行的自动提款机上取钱时,忘记了密码的最后一位数字,求:(I)任意按最后一位数字,不超过2次就按对的概率.(II)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.
.将件不同的产品排成一排,若其中,两件产品排在一起的不同排法有48种,则= .
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.(1)求点C到平面PBD的距离;(2)在线段上是否存在一点,使与平面所成的角的正弦值为,若存在,指出点的位置,若不存在,说明理由.
已知圆M: ,Q是x轴上的动点,QA、QB分别切圆M于A、B两点。(1)若,求的长;(2)求证:直线AB恒过定点,并求出定点坐标.
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EDC.(1)求证:CD⊥DE;(2)求三棱锥A—DEC的体积。