(本小题满分14分)如图,在四棱锥P—ABCD中,PD 底面ABCD,底面ABCD是正方形,PD=DC,E、F分别为AB、PB的中点。(1)求证:EF CD;(2)求DB与平面DEF所成角的正弦值;(3)在平面PAD内求一点G,使GF 平面PCB,并证明你的结论。
如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2. (Ⅰ)求证:A1C1与AC共面,B1D1与BD共面; (Ⅱ)求证:平面A1ACC1⊥平面B1BDD1; (Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).
已知圆,定点,问过点的直线的斜角在什么范围内取值时,这条直线与圆:(1)相切,(2)相交,(3)相离,并写出过点的切线的方程.
直线过点,与轴、轴分别交于两点,并且有向线段,求直线的方程.
在直线中,当时,,求此直线的方程.
作出方程的曲线.