(本小题满分14分)如图所示,某海岛上一观察哨A在上午11时测得一轮船在海岛北偏东的C处,12时20分测得船在海岛北偏西的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?
设命题:函数在上单调递增;命题:不等式对任意的恒成立.若“且”为假,“或”为真,求的取值范围.
如图,在棱长都相等的正三棱柱中,分别为,的中点.⑴求证:; ⑵求证:.
椭圆的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为,求椭圆的方程.
求与圆相外切,且与线相切于点的圆的方程.
(本小题满分12分) 设, .(1)当时,求曲线在处的切线方程;(2)如果存在,使得成立,求满足上述条件的最大整数;(3)如果对任意的,都有成立,求实数的取值范围.