已知函数在点处的切线方程为.(I)求的表达式;(Ⅱ)若满足恒成立,则称是的一个“上界函数”,如果函数为(R)的一个“上界函数”,求t的取值范围;(Ⅲ)当时,讨论在区间(0,2)上极值点的个数.
已知函数,数列满足,,,e为自然对数的底数. (1)求函数的单调区间; (2)求证:.
在平面直角坐标系中,已知点,点,点. (1)求经过A,B,C三点的圆P的方程; (2)过直线上一点Q,作圆P的两条切线,切点分别为A,B,求证:直线AB恒过定点,并求出定点坐标.
已知数列是递增的等比数列,为其前n项和,且. (1)求数列的通项公式; (2)设数列满足,求其前n项和为.
设圆与圆,动圆C与圆外切,与圆内切. (1)求动圆C的圆心轨迹L的方程; (2)已知点,P为L上动点,求最小值.
平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点. (i)求的值; (ii)求面积的最大值.