1已知函数,,,且,.(1)求、的解析式;(2)为定义在上的奇函数,且满足下列性质:①对一切实数恒成立;②当时.(ⅰ)求当时,函数的解析式;(ⅱ)求方程在区间上的解的个数.
已知条件p:A={x|2a≤x≤a2+1},条件q:B={x|x2-3(a+1)x+2(3a+1)≤0}.若条件p是条件q的充分条件,求实数a的取值范围.
如图,在空间四边形SABC中,AC、BS为其对角线,O为△ABC的重心,试证:(1)(;(2).
设函数上两点,若,且P点的横坐标为.(Ⅰ)求P点的纵坐标;(Ⅱ)若求;(Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.
设函数。(Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程;(Ⅱ)若函数在区间内不单调,求实数的取值范围。
已知=(cosα,sinα),=(cosβ,sinβ),与之间有关系|k+|=|-k|,其中k>0,(Ⅰ)用k表示;(Ⅱ)求·的最小值,并求此时与的夹角的大小。