观察等式: ,,,将以上三个等式两边分别相加得.(1)猜想并写出:=____________________.(2)直接写出下式的计算结果:__________________________. (3)探究并计算:______________________.
有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN请解答以下问题:(1)如图2,若延长MN交线段BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?
如图,过点P(2,)作轴的平行线交轴于点,交双曲线()于点,作交双曲线()于点,连结.已 知.(1)求的值; (2)设直线MN解析式为,求不等式≥的解集
已知二次函数.⑴求证:无论取何实数,此二次函数的图像与轴都有两个交点;⑵若此二次函数图像的对称轴为,求它的解析式;
在平面直角坐标系中,给定以下五点A(-2,0),B(1,0)C(4,0),D(-2,),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.
某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? ⑵第三天12时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式