在某次试验中,有两个试验数据x,y,统计的结果如下面的表格1.
(1)在给出的坐标系中画出x,y的散点图。(2)补全表格2,然后根据表格2的内容和公式,1求出y对x的回归直线方程中回归系数2估计当x为10时的值是多少?
已知函数 (I)当时,求函数的极小值 (II)试讨论曲线与轴的公共点的个数。
已知在R上单调递增,记的三内角的对应边分别为,若时,不等式恒成立. (Ⅰ)求实数的取值范围; (Ⅱ)求角的取值范围; (Ⅲ)求实数的取值范围.
已知是定义在,,上的奇函数,当,时,(a为实数). (1)当,时,求的解析式; (2)若,试判断在[0,1]上的单调性,并证明你的结论; (3)是否存在a,使得当,时,有最大值.
设数列{}的前n项和为,且,. (1)设,求证:数列{}是等比数列; (2)设,求证:数列{}是等差数列; (3)求.
已知函数,数列{}是公差为d的等差数列,数列{}是公比为q的等比数列(q≠1,),若,,. (1)求数列{}和{}的通项公式; (2)设数列{}的前n项和为,对都有… 求.