(、(本小题满分12分)已知椭圆的中心在原点,焦点,且经过点(1)求椭圆的方程;(2)设、是直线:上的两个动点,点与点关于原点对称,若,求的最小值。
已知函数。 (Ⅰ)讨论函数的单调区间; (Ⅱ)若在恒成立,求的取值范围。
已知函数,,其中R. (Ⅰ)当a=1时判断的单调性; (Ⅱ)若在其定义域内为增函数,求正实数的取值范围; (Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围
已知函数 (Ⅰ)求函数的最小正周期; (Ⅱ)在中,为内角的对边,若,求的最大面积。
已知曲线的极坐标方程为,直线的参数方程是:. (Ⅰ)求曲线的直角坐标方程,直线的普通方程; (Ⅱ)求曲线与直线交与两点,求长.
如图,已知直三棱柱中,,,分别是棱,的中点. (Ⅰ)求证:平面平面; (Ⅱ)求证:平面;