(本题满分18分,第1小题6分,第2小题6分,第3小题6分)对于定义在D上的函数,若同时满足(Ⅰ)存在闭区间,使得任取,都有是常数);(Ⅱ)对于D内任意,当时总有,则称为“平底型”函数。(1)判断是否是“平底型”函数?简要说明理由;(2)设是(1)中的“平底型”函数,若,对一切恒成立,求实数的范围;(3)若是“平底型”函数,求和满足的条件,并说明理由。
.(本小题满分12分) 已知函数. (Ⅰ)求的最小正周期; (Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
(1)求数列的通项公式; (2)若数列满足:,求数列的前项和.
的周长为,且. (1)求边的长; (2)若的面积为,求角的度数.
建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2的造价分别为200元和150元,如何设计水池的长和宽能使得水池的造价最低?最低造价是多少?
某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天获得400元以上的销售收入,应怎样制定这批台灯的销售价格?