(本题满分18分,第1小题6分,第2小题6分,第3小题6分)对于定义在D上的函数,若同时满足(Ⅰ)存在闭区间,使得任取,都有是常数);(Ⅱ)对于D内任意,当时总有,则称为“平底型”函数。(1)判断是否是“平底型”函数?简要说明理由;(2)设是(1)中的“平底型”函数,若,对一切恒成立,求实数的范围;(3)若是“平底型”函数,求和满足的条件,并说明理由。
设命题:“方程有两个实数根”;命题:“方程无实根”,若为假,为假,求实数的取值范围.
已知函数.(Ⅰ)求;(Ⅱ)求函数图象上的点处的切线方程.
已知函数,,,其中且.(I)求函数的导函数的最小值;(II)当时,求函数的单调区间及极值;(III)若对任意的,函数满足,求实数的取值范围.
当时,,(I)求;(II)猜想与的关系,并用数学归纳法证明.
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:(≤120).已知甲、乙两地相距100千米。(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?