(本题满分18分,第1小题6分,第2小题6分,第3小题6分)对于定义在D上的函数,若同时满足(Ⅰ)存在闭区间,使得任取,都有是常数);(Ⅱ)对于D内任意,当时总有,则称为“平底型”函数。(1)判断是否是“平底型”函数?简要说明理由;(2)设是(1)中的“平底型”函数,若,对一切恒成立,求实数的范围;(3)若是“平底型”函数,求和满足的条件,并说明理由。
用数学归纳法证明:
已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)设时,函数的最小值是,求的最大值.
设函数 (1)当时,解不等式:; (2)若不等式的解集为,求的值.
在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点到上点的距离的最小值.
如图,⊙的半径为6,线段与⊙相交于点、,,,与⊙相交于点. (1)求长; (2)当 ⊥时,求证:.