已知:直线与轴交于点A,与轴交于点B.(1)分别求出A,B两点的坐标;(2)过A点作直线AP与轴交于点P,且使OP=2OB,求△ABP的面积.
已知:如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:四边形AECF是平行四边形.
如图,在正方形ABCD中,CE⊥DF.若CE=10cm,求DF的长.
如图,在Rt△ABC中,∠C=90°,AC=8㎝,BC=6㎝,M为AC上一点且AM=BC,过A点作射线AN⊥CA,A为垂足,若一动点P从A出发,沿AN运动,P点运动的速度为2㎝/秒.(1)经过几秒△ABC与△PMA全等;(2)在(1)的条件下,AB与PM有何位置关系,并加以说明.(3)在(1)的条件下,设PM与AB的交点为D,若AD的长为4.8㎝,求AB的长.
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.