一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片。(1)从盒中依次抽取两次卡片,每次抽取一张,取出的卡片不放回,求两次取到的卡片的数字既不全是奇数,也不全是偶数的概率;(2)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为偶数的概率;(3)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当放回记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望。
如图,已知 的两条对角线AC与BC的交点为, 是任意一点,求证: .
在数列中,,,其中.(1)设,求数列的通项公式;(2)记数列的前项和为,试比较与的大小.
2012年春晚歌舞类节目成为春晚顶梁柱,尤其是不少创意组合都被网友称赞很有新意.王力宏和李云迪的钢琴PK,加上背景板的黑白键盘,更被网友称赞是行云流水的感觉.某网站从2012年1月23号到1月30做了持续一周的在线调查,共有n人参加调查,现将数据整理分组如题中表格所示.
(1)求n及表中x,y,z,s,t的值(2)为了对数据进行分析,采用了计算机辅助计算,分析其中一部分计算,见算法流程图,求输出的S值,并说明S的统计意义.(3)从年龄在[20,30)岁人群中采用分层抽样法抽取6人参加元宵晚会活动,其中选取2人作为代表发言,求选取2名代表中恰有1人年龄在[25,30)岁的概率.
(本小题满分14分)已知函数,().(Ⅰ)已知函数的零点至少有一个在原点右侧,求实数的范围.(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.试问:函数(且)是否存在“中值相依切线”,请说明理由.
(本小题满分14分)设集合W是满足下列两个条件的无穷数列{an}的集合:①, ②.其中,是与无关的常数.(Ⅰ)若{}是等差数列,是其前项的和,,,证明:;(Ⅱ)设数列{}的通项为,且,求的取值范围;(Ⅲ)设数列{}的各项均为正整数,且.证明.