(本小题满分16分)公差的等差数列的前项和为,已知,.(Ⅰ)求数列的通项公式及其前项和;(Ⅱ)记,若自然数满足,并且成等比数列,其中,求(用表示);(Ⅲ)记,试问:在数列中是否存在三项恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
双曲线的中心在原点,右焦点为,渐近线方程为. (Ⅰ)求双曲线的方程; (Ⅱ)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点。
若圆C经过点和,且圆心C在直线上,求圆C的方程.
已知命题p:方程有两个不相等的实根; 命题q:不等式的解集为R; 若p∨q为真,p∧q为假,求实数m的取值范围。
已知,α和β为锐角. (Ⅰ)若tan(α+β)=2+,求β; (Ⅱ)若tantanβ=2-,满足条件的α和β是否存在?若存在,请求出α和β的值,若不存在,请说明理由.
已知向量,向量与向量的夹角为,且. (Ⅰ)求向量; (Ⅱ)设向量向量,其中,若,试求的取值范围.