(本小题满分16分)如图,已知抛物线的焦点为,是抛物线上横坐标为8且位于轴上方的点. 到抛物线准线的距离等于10,过作垂直于轴,垂足为,的中点为(为坐标原点).(Ⅰ)求抛物线的方程;(Ⅱ)过作,垂足为,求点的坐标;(Ⅲ)以为圆心,4为半径作圆,点是轴上的一个动点,试讨论直线与圆的位置关系.
(本小题满分12分)从某小区抽取100个家庭进行月用电量调查,发现其月用电量都在50度至350度之间,频率分布直方图如图所示.(1)根据直方图求的值,并估计该小区100个家庭的月均用电量(同一组中的数据用该组区间的中点值作代表);(2)从该小区已抽取的100个家庭中, 随机抽取月用电量超过300度的2个家庭,参加电视台举办的环保互动活动,求家庭甲(月用电量超过300度)被选中的概率.
(本小题满分12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(1)求证:BC⊥平面VAC;(2)若直线AM与平面VAC所成角为.求三棱锥B-ACM的体积.
(本小题满分12分)已知(1)求函数的最小正周期及单调递增区间.(2)当时,方程有实数解,求实数的取值范围.
(本小题满分10分)等差数列中,,公差且成等比数列,前项的和为.(1)求及;(2)设,,求.
(本小题满分12分)己知函数 (1)讨论函数f(x)的单调性;(2)设,若对任意不相等的正数,恒有,求a的取值范围.