(本小题满分12分)从某小区抽取100个家庭进行月用电量调查,发现其月用电量都在50度至350度之间,频率分布直方图如图所示.(1)根据直方图求的值,并估计该小区100个家庭的月均用电量(同一组中的数据用该组区间的中点值作代表);(2)从该小区已抽取的100个家庭中, 随机抽取月用电量超过300度的2个家庭,参加电视台举办的环保互动活动,求家庭甲(月用电量超过300度)被选中的概率.
(本题12分) 某校高二年级的名学生参加一次科普知识竞赛,然后随机抽取名学生的成绩进行统计分析. (1)完成频率分布表; (2)根据上述数据画出频率分布直方图; (3)估计这次竞赛成绩在80分以上的学生人数是多少? (4)估计这次竞赛中成绩的平均分是多少?
(本题8分) 在一个不透明的袋子中装有分别标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同,现从中一次摸出两个小球. (1)请写出所有的基本事件; (2)求摸出的两个小球标注的数字之和为5的概率.
(本小题满分14分) 已知函数 (Ⅰ)求f(x)在[-1,e](e为自然对数的底数)上的最大值; (Ⅱ)对任意给定的正实数a,曲线y= f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
(本小题满分12分) 已知椭圆的离心率为e=,且过点() (Ⅰ)求椭圆的方程; (Ⅱ)设直线l:y=kx+m(k≠0,m>0)与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.
(本小题满分12分) 某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y= f(x)模拟这一奖励方案. (Ⅰ)试写出模拟函数y= f(x)所满足的条件; (Ⅱ)试分析函数模型y= 4lgx-3是否符合奖励方案的要求?并说明你的理由.