国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.某中学为了了解学生体育活动情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”.以下是根据所得的数据制成的统计图的一部分.根据以上信息,解答下列问题:每天在校锻炼时间超过1小时的人数是 ;请将图2补充完整;2010年我市初中毕业生约为9.6万人,请你估计今年全市初中毕业生中每天锻炼时间超过1小时的学生约有多少万人?
如图,锐角 △ ABC 中, ∠ A , ∠ B , ∠ C 的对边分别是 a , b , c ,已知二次函数 y = x 2 cos A - x + 1 cos A 的图象顶点与点 - 2 cos A , 3 cos A 关于 y 轴对称.延长 AB 至 P 点,使 AP = 2 AC ,且以 C 为圆心, AC 为半径的圆与以 B 为圆心 BP 为半径的圆相外切.
(1)求 ∠ A 的度数;
(2)设 BP = r ,求 a : b : c 的值;
(3)若关于 t 的方程 3 t 2 - 3 ct + a + b = 0 的两个根 α , β 满足 α α + 1 + β β + 1 = α + 1 β + 1 ,求 △ ABC 的面积.
如图,已知直线 l : y = kx + 2 ( k < 0 ) ,与 y 轴交于点 A ,与 x 轴交于点 B ,以 OA 为直径的 ⊙ P 交 l 于另一点 D ,把弧 AD 沿直线 l 翻转后与 OA 交于点 E .
(1)当 k = - 2 时,求 OE 的长;
(2)是否存在实数 k ( k < 0 ) ,使沿直线 l 把弧 AD 翻转后所得的弧与 OA 相切?若存在,请求出此时 k 的值;若不存在,请说明理由.
如图所示,在平面直角坐标系中, ⊙ O 1 与 x 轴交于 A 2 , 0 , B t + 2 , 0 (且 t > 0 ) 两点,与 y 轴相切于点 C , AB = AC .
(1)求点 C , O 1 的坐标和 t 的值;
(2)求过点 A , B , C 的抛物线解析式;
(3)若抛物线顶点为 D ,判断点 D 与 ⊙ O 1 的位置关系,并求出 △ ABD 的外接圆半径.
如图①, P 为第一象限内一点,过 P , O 两点的 ⊙ M 交 x 轴正半轴于点 A ,交 y 轴正半轴于点 B , ∠ OPA = 45 ∘ .
(1)求证: PO 平分 ∠ APB ;
(2)作 OH ⊥ P A 交弦 PA 于点 H .
①若 AH = 2 , OH + PB = 8 ,求 BP 的长;
②若 BP = m , OH = n ,把 △ POB 沿 y 轴翻折,得到 △ P ' OB (如图②),求 A P ' 的长.
如图, AB 是 ⊙ O 的直径,过点 B 作 ⊙ O 的切线 BM ,点 P 在右半圆上移动(点 P 与点 A , B 不重合),过点 P 作 PC ⊥ AB ,垂足为 C .点 Q 在射线 BM 上移动(点 M 在点 B 的右边),且在移动过程中保持 OQ / / AP .
(1)若 PC , QO 的延长线相交于点 E ,判断是否存在点 P ,使得点 E 恰好在 ⊙ O 上?若存在,求出 ∠ APC 的大小;若不存在,请说明理由;
(2)连接 AQ 交 PC 于点 F ,设 k = PF PC ,试问: k 的值是否随点 P 的移动而变化?证明你的结论.