如图, AB 是 ⊙ O 的直径,过点 B 作 ⊙ O 的切线 BM ,点 P 在右半圆上移动(点 P 与点 A , B 不重合),过点 P 作 PC ⊥ AB ,垂足为 C .点 Q 在射线 BM 上移动(点 M 在点 B 的右边),且在移动过程中保持 OQ / / AP .
(1)若 PC , QO 的延长线相交于点 E ,判断是否存在点 P ,使得点 E 恰好在 ⊙ O 上?若存在,求出 ∠ APC 的大小;若不存在,请说明理由;
(2)连接 AQ 交 PC 于点 F ,设 k = PF PC ,试问: k 的值是否随点 P 的移动而变化?证明你的结论.
解方程:
如图,已知点A (2,4) 和点B (1,0)都在抛物线上. (1)求m、n; (2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式; (3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.
将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n]. (1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=____;直线BC与直线B′C′所夹的锐角为______度; (2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值; (3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.
如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B. (1)求证:线段AB为⊙P的直径; (2)求△AOB的面积; (3)如图2,Q是反比例函数图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D,求证:DO·OC=BO·OA.
为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元. (1)求w与x之间的函数关系式; (2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?