如图①, P 为第一象限内一点,过 P , O 两点的 ⊙ M 交 x 轴正半轴于点 A ,交 y 轴正半轴于点 B , ∠ OPA = 45 ∘ .
(1)求证: PO 平分 ∠ APB ;
(2)作 OH ⊥ P A 交弦 PA 于点 H .
①若 AH = 2 , OH + PB = 8 ,求 BP 的长;
②若 BP = m , OH = n ,把 △ POB 沿 y 轴翻折,得到 △ P ' OB (如图②),求 A P ' 的长.
平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.(1)求此抛物线的解析式;(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.
如图,AB是⊙O的直径,,M是弧AB的中点,OC⊥OD,△COD绕点O旋转与△AMB的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.(1)求证:;(2)连接PM、QM,试探究:在△COD绕点O旋转的过程中,∠PMQ是否为定值?若是,求出∠PMQ的大小;若不是,请说明理由;(3)连接EF,试探究:在△COD绕点O旋转的过程中,△EFM的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由
如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?
如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.
已知关于的一元二次方程有两个不相等的实数根.(1)求实数的取值范围;(2)0可能是方程一个根吗?若是,求出它的另一个根;若不是,请说明理由.