如图,已知直线 l : y = kx + 2 ( k < 0 ) ,与 y 轴交于点 A ,与 x 轴交于点 B ,以 OA 为直径的 ⊙ P 交 l 于另一点 D ,把弧 AD 沿直线 l 翻转后与 OA 交于点 E .
(1)当 k = - 2 时,求 OE 的长;
(2)是否存在实数 k ( k < 0 ) ,使沿直线 l 把弧 AD 翻转后所得的弧与 OA 相切?若存在,请求出此时 k 的值;若不存在,请说明理由.
如图,BD是直径,过⊙O上一点A作⊙O切线交DB延长线于P,过B点作BC∥PA交⊙O于C,连接AB、AC ,(1)求证:AB = AC(2)若PA=" 10" ,PB =" 5" ,求⊙O半径.
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证四边形DEBF是菱形.
三角形两边长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,求此三角形的面积. 24如图,直线和抛物线都经过点A(1,0),B(a,2).⑴求直线和抛物线的解析式;⑵当x为何值时,(直接写出答案).
如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O于D,AD的延长线交BC于E,若∠C = 25°,求∠A的度数.
解一元二次方程:(1)(x+1)2="3" (2)3y2+4y+1=0