(本小题满分16分)如图,平面直角坐标系中,和为等腰直角三角形,,设和的外接圆圆心分别为.(Ⅰ)若圆M与直线相切,求直线的方程;(Ⅱ)若直线截圆N所得弦长为4,求圆N的标准方程;(Ⅲ)是否存在这样的圆N,使得圆N上有且只有三个点到直线的距离为,若存在,求此时圆N的标准方程;若不存在,说明理由.
(本小题满分12分)如图,四棱锥P-ABCD中底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分别为CD、PB的中点。 (1)求证:EF⊥平面PAB; (2)求三棱锥P-AEF的体积
(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率; (2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.若以作为点P的坐标,求点P落在区域内的概率.
(本小题满分12分)设数列的前项和为,已知 (1)求数列的通项公式; (2)若,求数列的前项和
(本小题满分14分) 已知数列满足:,(其中为自然对数的底数). (1)求数列的通项; (2)设,,求证:, .
(本小题满分14分) 已知函数,设曲线在与轴交点处的切线为,为的导函数,满足. (1)求; (2)设,,求函数在上的最大值; (3)设,若对一切,不等式恒成立,求实数的取值范围.