已知☉O:x2+y2=1和定点A(2,1),由☉O外一点P(a,b)向☉O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系.(2)求线段PQ长的最小值.(3)若以P为圆心所作的☉P与☉O有公共点,试求半径取最小值时☉P的方程.
(本小题满分12分) 如图,在平面直角坐标系中,锐角的终边分别与单位圆交于两点. (Ⅰ)如果,点的横坐标为,求的值; (Ⅱ)已知点,求函数的值域.
.(本小题满分12分) 为了解某校高三学生质检数学成绩分布,从该校参加质检的学生数学成绩中抽取一个样本,并分成5组,绘成如图所示的频率分布直方图.若第一组至第五组数据的频率之比为,最后一组数据的频数是6. (Ⅰ)估计该校高三学生质检数学成绩在125~140分之间的概率,并求出样本容量; (Ⅱ)从样本中成绩在65~95分之间的学生中任选两人,求至少有一人成绩在65~80分之间的概率.
已知定义在R上的函数,其中a、b为常数。 (1)若曲线在点处的切线方程为,求a、b的值; (2)若,且函数在处取得最大值,求实数a的取值范围。
已知椭圆的离心率为=,椭圆上的点到两焦点的距离之和为12,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点在椭圆上,且位于轴的上方,. (I)求椭圆的方程; (II)求点的坐标; (III)设是椭圆长轴AB上的一点,到直线AP的距离等于,求椭圆上的点到点的距离的最小值.
如图,在底面是矩形的四棱锥P—ABCD中,面ABCD,E是PD的中点。 (1)求证:平面平面PDA; (2)求几何体P—ABCD被平面ACE分得的两部分的体积比