已知向量,设函数(I)求的解析式,并求最小正周期;(II)若函数的图像是由函数的图像向右平移个单位得到的,求的最大值及使取得最大值时的值.
已知函数. (1)若函数在处的切线方程为,求的值; (2)讨论方程解的个数,并说明理由.
设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点. (1)求椭圆的方程; (2)求证:三点共线.
已知函数. (1)求函数在点处的切线方程; (2)求函数的单调递减区间.
已知等差数列的前项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求数列的前项和.
椭圆的离心率是,它被直线截得的弦长是,求椭圆的方程.