已知向量,设函数(I)求的解析式,并求最小正周期;(II)若函数的图像是由函数的图像向右平移个单位得到的,求的最大值及使取得最大值时的值.
抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C. (1)求抛物线M的方程. (2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点. (1)证明: (2)若与平面所成的角为,求二面角的余弦值
已知函数,,直线与曲线切于点且与曲线切于点.(1)求a,b的值和直线的方程;(2)证明:.
,证明:.
在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为。(Ⅰ)求圆C的极坐标方程;(Ⅱ)求直线l被圆C所截得的弦长